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Abstract. We present an exactly soluble boson model which manifests two kinds of condensation.
They occur in two stages: for intermediate densities one has&onventionaBose condensation

in the lowest modet = 0, which is due to a diagonal perturbation of the imperfect Bose
gas Hamiltonian, whereas for large densitigsthis condensation coexists witonventional
(generalized, non-extensivdgose—Einstein condensation in non-zero modes condensation,
corresponding to the standard mechanism of saturation.

1. Introduction

Since its first description by Einstein [1] in 1925, it has been knownadbatentionaBose—
Einstein condensation with macroscopic occupation of a single level is a very subtle matter.
For example, its magnitude strongly depends on the shape of container and on the way one
takes the thermodynamic limit, see e.g. [2, 3] and appendix A. It was Casimir [4] who showed
that in a long prism it is possible for condensation in the perfect Bose gas (PBG) to occur in a
‘narrow band’ rather than in a single level. This was an exampigenéralizedBose—Einstein
condensation, a concept introduced earlier by Girardeau [5]. The first rigorous treatment
of this observation for the PBG was due to van den Berg, Lewis angl [Bu6—10]. They
proposed a classification of generalized condensation types; according to this classification
the condensation in a single level is of type |, see appendix A.

The salient feature of conventional Bose—Einstein condensation (generalized or not) is
that it appears in non-interacting systems of bosons (this does not rule out external potentials)
as soon as the total particle density becomes larger than some critical value. Therefore, behind
this kind of condensation there existsaturation mechanismrelated to the Bose statistics
of particles. It was demonstrated in [11] that exactly the same mechanism is responsible
for Bose—Einstein condensation in a system of bosons with repulsive interaction, commonly
called the imperfect Bose gas (IBG). In a recent paper [12] it was shown that, instead of the
geometry of the container, a judicious choice of repulsive interaction may split initial single-
level condensation (type 1) into non-extensive (type Ill) condensation, when no levels are
macroscopically occupied.

Therefore, the concept of (generalized) conventional Bose—Einstein condensation caused
by the mechanism of saturation fits well for bosons with repulsive interaction.
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Since bosons are very sensitive to attraction, there is another kind of condensatien (
conventionalBose condensation) induced by this interaction [13-15]. Again, this kind of
condensation appears when the total particle density (or chemical potential) becomes larger
than some critical value, but this is an attractive interaction (and not simply Bose statistics)
which defines the magnitude of the condensate and its behaviour. To escape the collapse,
an attractive interaction in a boson system should be stabilized by a repulsion. Therefore,
conventional and non-conventional condensation may coexist.

The aim of this paper is to study a model which has both kinds of condensation. The non-
conventional one is due to an attraction term in the Hamiltonian of the model. This condensation
starts at the single lowest level for moderate densities (negative chemical potentials) and
saturates at some critical density. Itis above this threshold thabthentionaBose—Einstein
condensation appears to absorb the increasing total particle density (the saturation mechanism).

At these densities both kinds of condensation coexist. Moreover, the repulsive interaction
in our model is such that Bose—Einstein condensation splits into the non-extensive one, i.e.,
into the generalized type Ill condensation. Since it is known that Bose systems manifesting
condensation are far from perfect, we hope that our model will give more insight into possible
scenarios for condensation in real systems. For example, in a condensate of sodium atoms,
interaction seems to predominate compared to kinetic energy [16]. Therefore, condensation
in trapped alkali dilute gases [16—18] should be a combinationoof-conventionakand
conventionaBose condensation.

To fix the notation we first recall the IBG model introduced by Huang [19]. It is a system
of identical bosons of mass enclosed in a cuba ¢ R¢, of volumeV = |A|, centred at the
origin defined by the Hamiltonian

HBC = Z eragay + &N[Z\ e = h%k%/2m ) >0 (1.1)
keA* 14
whereN, = ) ;- ajar = ), o« Ni is the particle-number operator andcorresponds to
the one-particle kinetic energy. Hefe};c,- are the boson creation/annihilation operators
in the boson Fock spacg, overL2(A), corresponding to the second quantization in the box
A = x9_, L with periodic boundary conditions, i.e. to the dual

27 ng

A*:{keRd:kaz ,na:O,:I:l,:l:2,...;a:1,2,...,d}.
Then, ford > 2, at a given temperatue = -1 and a total particle density > pf (9)
(herepf ®) = p? (71, n = 0), wherep® (8, n) is the particle density of the PBG in the
grand-canonical ensemble) the IBG manifestsoaventionalBose—Einstein condensation
of type |1 [11, 20, 21], i.e. a macroscopic occupation of only the single-particle ground-state
level k = 0. See [7, 8] or appendix A for a classification afnventionalBose—Einstein
condensations.

However, in a recent paper [12] it was shown that the IBG (1.1) perturbed by the repulsive
diagonal interaction

~ A
Up = ﬁkX:* N? A>0 (1.2)
eA

demonstrates the Bose—Einstein condensation which occurs again for densitje%(6) (or
w > 2xpf(©) = pl(®)), but now it spreads into the Bose—Einstein condensation of type IIl.
This is anon-extensiveondensation, wheno single-particle levels are macroscopically
occupied (see appendix A). This model for- 0 was introduced in [22]. In what follows we
call it the Michoel-Schider—Verbeure (MSV) model:

HYSV = HIBC + [, (1.3)
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Then the conventional Bose—Einstein condensation of type Ill means that

(NE) s

lim =0 ke A*
A

for any p, whereas the double limit
R ¢ P
Jmtim 2 (Nduge=p = p[©)>0
{keA*,0< k] <8}

for u > pl(0). Here we denote by—) yusv (8, 1), B > 0, u € R, the grand-canonical Gibbs

state for the Hamiltonia@/ 'SV, Note that the modet/!®¢ — I, is rigorously studied in [23].
There it was shown that Bose—Einstein condensation is of type | only in the zerokmo@e

The fact that a gentle repulsive interaction may produce a generalizedxtensivBose—
Einstein condensation without any change of corresponding pressure has been also shown in
our recent paper [13]. This was done in context of a system:

HY = " eaja;+eoagao + j—oaéaéaoao (1.4)
ke A*\{0} 4

with eq(s €r—0) € R andgo > 0, perturbed by the interaction

1
Un== Y aVagaa  0<g <g(V)<pV™ (15)
4 keA™N (0}

with o < @+ < 1and O< y; < y«. This perturbatio/, (similar to the interactiom7A when
gr = A) leads to the Hamiltonian [13]

H? = HY +U,. (1.6)

In contrast to the MSV model, the grand-canonical pressure for our model (1.6)
1
p[B\Z(ﬂ’ M) = PA[HEZ] = ﬁ_V In Tr]__A e*/g(H,E\BZfMNA) (17)

in the thermodynamic limit is only defined in the doman= {u < 0} x {# > 0}. Hereu
is the chemical potential of the grand-canonical ensemble. In the thermodynamic limit this
pressure is equal to

2
PP = i P2 0 =1 palH) = B0 f o= o+ 52| 18

see [13]. HereP(B, ) is the pressure of the PBG in the thermodynamic limit. Notice that
the pressure (1.8) is independent of the paramégetd)}reax (g}, i.€. Of interaction (1.5).

Remark 1.1. Let domainD,, be defined by

De, = {6, 0) € Q1 p°(B, w) < pP(B, W) (1.9)
Then the thermodynamic limit (1.8) states that to endyre# {4}, the parametesy must be
negative, i.e.

Dey ={0O,n) € Qeo<pu <0} (1.10)
Below we only consider the casg < 0 andd > 2.

We denote byp8%(B, 1), the total particle density in the grand-canonical ensemble for the
model HEZ:
N

PRE(B. 1) = <7> B, ). (1.11)
H}?
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TheneB2(B, ) =lim , p§%(B, ) isthe corresponding thermodynamic limit which, according
to [13], is equal to
PP (B, 1) = pP(B, 1) (1.12)

for (6, u < gg), and to
U — &o

PP (B, ) = pP(B, ) + a0 (1.13)
for (8, eg < u < 0). Note that ford > 2 there is a finite critical density
&
pBZ(0) = supp®? (671, 1) = p®2 (671, 1 = 0) = pP(B) — — < +00 (1.14)
n<0 80
in this model.

Proposition 1.2. [13]Letp > pB%(0) (d > 2)and0 < g_ < g (V) < p V% fork € A*\{0},
witha;, < ar < 1and0 < y; < y+. Then for anyy < 0 we have:

(i) a condensation in the mode= 0 (evenifd < 3), i.e.

. x 0, for@®,p) e Q\D,
BZ 0, = | m M = —g ’ 115
o (6, 1) n V| e (%), for (8, ) € Dy, (19

(i) for any gg € R?

. a]fak *

lim{—=— =0 ke A"\ {0} (1.16)
A 1% HB?

i.e. there is no macroscopic occupation of mokles 0 but we have a generalized (non-

extensive) Bose—Einstein condensation:

o1 BZ
Jim lim — > (Nys=p—p%0) >0 (1.17)
{ke A*:0<| k| <8}
which foreg < 0 coexists with the condensation in the made 0 if (0, u) € D,.

Therefore, proposition 1.2 implies thtmexistenceof two kindsof Bose condensation in
model (1.6) for densitiep > pB%(6):

e a Bose condensation in the single mdde= 0 due to the term(soagao) which for
g0 < 0 mimics amattractionby an external potential [24] giving rise toxan-conventional
condensation of type | (see appendix A for the classification);

e aconventionaBose—Einstein condensation duestdurationof the total particle density,
where (similar to the MSV model) the type Ill condensation is due to the elastic repulsive
interactionU, (1.5) of bosons in models # 0. Therefore, interaction (1.5) is decisive
for the formation of the non-extensive Bose—Einstein condensation in model (1.6), while
it has no influence on the pressure (1.8).

The aim of this paper is to study a modification of model (1.6) which is, similar to (1.3),
stabilized by the IBG interaction (1.1):

Hy = eeaar + eoatao+ SENZ + 2 N2+ 5 N2, 1.18

A kEAZ\:{O} kA Gk olpto oV 0 v A oy kEAZ\:{O} k ( )
Herex > 0, g0 > 0, g > 0, buteg < 0. Note that the modeli, for ¢p = 0 andr = g = go
coincides with the MSV model (1.3).

In section 2 we show that for this generalization of models (1.3) and (1.6), the free-energy
density or the pressure can be calculated exactly in the thermodynamic limit. Different kinds of
Bose condensations, which occur in this model (1.18 ), are described in section 3. We reserve
section 4 for concluding remarks and discussions. A classification of Bose condensations and
some technical statements are presented in the appendices.
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2. Thermodynamic study

First we consider our model (1.18) in tbenonical ensembigs, o). This essentially simplifies
the thermodynamic study of the model. Lgt(8, o = ;) be the corresponding free-energy
density, i.e.

1
fa(B, p) = ~5v InTry (e77H) (2.1)

whereH, ¢ = S(®;’:1L2(A)) is the symmetrized-particle Hilbert space.
Theorem 2.1.LetA > 0, g > 0, go > Oandegg < 0, then we get

8002+ fP(B.p— po)} (2.2)

2

i.e. the limit is independent @f, providedg > 0. Here fP(B, p) is the free energy of the PBG
in the thermodynamic limit, i.e.

fPB. p) = lim £(B. p) (2.3)

F(B.p) =i fr(B.p) =207+ inf {80/00 +

with

1 - .
R, p) = v In Z e P Cen g o] (2.4)
{nr=0,1,2,...}yenx

and[x] denotes the integer part af> 0.

Proof. By (1.18) and (2.1) we get

1 [pV] ”
faB.p) =~ In { > e"’”“’*v‘”} +ip? (25)
’BV no=0
where
80 1 _ X it n?
ha(p, po) = eopo + Epg — 'B_V In Z e BQ kear\ylexmit sy k])(szk#onk:[PV]—[poV]'
e=0,1.2, - Jrear\(0)
(2.6)
By (2.5) one obtains the estimate
. 1 .
ap?+ inf ha(p, po) — = IN([pV]1+1) < fa(B. p) < Ap”+ inf ha(p, po)
po€[0,p] ,BV po€l0,p]
which in the thermodynamic limit gives
f(B.p) =1lim fa(B. p) = 1o +1im inf h(p, po). (2.7
A A po€l0,p]
Note that (2.6) can be rewritten as
1 e n
ha(p, po) = €opo + %Pé TRV In(e™ 2 Zkervo E)ﬁ;(ﬂ, P — Po) (2.8)

where(—),;f(ﬂ, o — po) is the canonical Gibbs state for the PBG watkcludedmodek = 0

for densityp — po, with the corresponding free-energy densfi§(8, p) defined by (2.4) for
k € A*\ {0}. Since

lim 7X(8. p) = lim £7(6. p)



454 J-B Bru and V A Zagrbnov

the Jensen inequality

Bg 2
B 2 * ~
<e 3 D kear\(0) ”k) gp > e 2 (ZkEA \@ ”k)”f

A

and (2.8) imply the estimate
lim A (p. po) < eopo+ 220§ + £ (B p = po). (2.9)
Moreover, since
et <1
by (2.6) we have
ha(p. po) = £opo + %pé + 1B, p — po)
which together with (2.9) gives (2.2). a

Remark 2.2. Let us denote by 2% (8, p) the free-energy density correspondingi§ (1.6)
with g (V) = g/2,i.e.

1 BZ
IEB.p) = ~av INTryy (e7775).

Then (1.6), (1.18) and (2.1) imply that
fa(B. p) = 1o® + fF2(B, p)
from which, by theorem 2.1, we deduce

1B, p) =lim 2B p) = inf {zop0+ T8+ 17(B. 9 — p0)| (2.10)
and
fB.p)=rp"+ [P(B. p). (2.11)

By explicit calculation, one checks the convexity £#4 (8, p) as a function of. Therefore,
the same is true fof (8, p), see (2.2) and (2.11).

Remark 2.3. Since the pressune®? (8, n) is a Legendre transform of the corresponding free-
energy densityfB2(B, p), we get from (2.10) that

pP4(B, w) = suplup — f24(B, p)}

p=0
gO 2 P
= Supq SUp Ko — €0Po — 5P +u(o —po) — f (B, p— po)
p0=0 | p=po

Sup{pp(ﬂ, W) — (g0 — 1) po — g—;pg}
po=0
which coincides with (1.8) found in [13].
Now we consider our model (1.18) in tigeand-canonical ensemblg, ). Let
1
) = — InTrg, e PHA=1ND
pa(B, 1) BV Fa

be the grand-canonical pressure corresponding to (1.18).

Theorem 2.4.LetA > 0, go > 0, g > 0, andgg < 0, then:
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(i) the domain of stability of{,, i.e.
O0={6>0,neRY: lim pa(B. 1) < +00} (2.12)

is equal toQ = {# > 0} x {u € R1};
(i) in the thermodynamic limit one gets

(e = "‘)2} (2.13)

BZ +
{P (B, @) BT
for 0, n) € O, where pBZ(8, ) is the pressure defined by (1.8). Therefore, the

pressure (2.13) is independent of the paramgtprovided it is positive.

(B, ) = |i[p pa(B, ) = tir;fo

Proof. (i) Note that the HamiltoniarH/, (1.18) is superstable, i.e. there a#e= —¢gq and
C = A such that

C
Hy > —N\B + VN,% (2.14)

for any boxA. Therefore, by (2.14) we obtain that the infinite volume limit (2.13) exists for
anyu € R
(ii) Since the pressurg(B, w) is in fact a Legendre transform of the corresponding free-
energy densityf (8, p) (2.2) or (2.11), by theorem 2.1 we get
p(B, 1) = suplup — f(B, p)} = SUPup — Ap® — f2(B, p)) (2.15)
p=0 p=0
with £B2(p, p) defined by (2.10). Straightforward calculations give that

. (n —a)?
f +—
inf fap+ 4

and thus (2.15) takes the form

— 848, p)} = o — rp? — fP4(B, p)

N2
PP ) = sup{ inf {ap NGl m}} . (2.16)

00 (<0 4

Note that the sup., and inf,<o do not generally commute. However, convexity of the free-
energy densityfB4(8, p) (see remark 2.2) implies that

2
WD 17, ) (217)

is a strictly concave function gf and a strictly convex function of, see figure 1. This ensures
the unigueness of the stationary paipt @) corresponding to

F(p,a)=ap +

0. F(p,a)=0
3, F(p,a)=0.
Therefore,
F(p,a) = sup{inf{F(p,a)}} = inf {SUpF(p,a)}¢. (2.18)
p>0 a<0 a<0 >0
Since
—a)?
SUpF(p,Ol) — {u +PBZ(/3,01)}
p=0 4

(2.16)—(2.18) imply (2.13). O
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F(p,a)

Figure 1. lllustration of the function¥ (p, «).

3. Bose condensations

Let pa (B, 1) denote the grand-canonical total particle density corresponding to model (1.18),
i.e.

A

N
oa(B, ) = <7> =0, pa(B, 1) (3.1)
Hy

where(—) g, (8, ) represents the grand-canonical Gibbs state for the Hamiltdhiafl.18).
Theorem 3.1.For (0, ) € é (2.12) we have

p(B. 1) = lim pa(B. ) = p*(B. &(B. ). (3.2)
Herea(8, 1) < 0is a unique solution of the equation
BZ T (a — ) —
PEEB ) + —— 0 (3.3)
whenu < uB%(0) = 21p8%(0), whereas fow > 1B%(6) one gets (see figure 2)
i _®*
p(B, 1) = lim pp(B, ) = R (3.4

Here pB%(0) is defined above by (1.14).

Proof. Leta/(B, 1) < 0 be defined by (2.13), i.e.

(n—&(B, w))?

N2
P(B. 1) = {pBZ(ﬁ,aH%}:sz(ﬁ,&'(ﬁ, 1)) + o (3.5)

Since

inf
a<0

2
BZ +(M—Ol) _ BZ +(Ol_l/«)
0o [p (B.o)+ —— | =p (B ) o
then foru < uB%(0) = 21pB%(6) (see (1.14)) there exists a unique solutiaiB, 1) < 0
of (3.3) which coincides witle (8, ) in (3.5). Since{pa (B, u)}a are convex functions of
w € R, then combining (3.1) and (3.5) with the Griffiths lemma (see [25, 26] or appendix B)
we obtain the thermodynamic limit for the total particle density
(1 — (B, 1))
2\ ’

(3.6)

p(B, ) =0, p(B, u) =
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@ | 9B 13C)
o u

Figure 2. lllustration of the functiori(8, 1) defined by equation (3.5).

This together with (3.3) gives (3.2).
Now lety > uB%(6). Then by definitions of:2%(9) andpB%(6) (see (1.14)) one gets

—)? _
o[98+ P | g+ O <0
This implies that
o BZ (e — “)2 _ BZ Mz
pB, ) = J,Qfo {P (B, ) + T } =p B0+ Ty (3.7)

i.e.®(8, u) = 0. Therefore, by the Griffiths lemma and (3.1), (3.7) we get (3.4). O

Theorem 3.2.Letgg < 0. Then we have

: 0, for (6, ) € O\ D.
. anap 0
0, n) = lim { 2= = ~ 3.8
pO( ’ I’L) I1I2ﬂ< V >HA (/37 M’) { (O{(ﬁ,(};o) So) , fOf (9’ /J,) c Dso} ( )
with @(B, 1) defined by equation (3.5), see figure 2. Here domims defined by
Dy = {0, 1) € Q60 < @B, )} = {0, ) € O : fio(®) < 1) (3.9)
see figures 2 and 4, where we denotgi{p) a unique solution of the equation
a(p, n) = eo. (3.10)
Proof. Since{p, (B, i)} are convex functions afy € R, then by
asa
Hy
and by the Griffiths lemma (see [25, 26] or appendix B) we obtain that
. [aja
lim <°—°> (B, 1) = =B, (B, 10). (3.12)
A \% Hy

For u < uB20) = 21pB%(0) there is a uniquex(8, 1) < O defined by (3.5) which
verifies (3.3), whereas for > 1B%(9) according to (3.7) we obtai@(8, u) = 0. Note
that by (1.8) foru < g9 we have

pP%(B. w) = p° (B, w).
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Therefore, by (3.9), (3.12) one gets from (3.5) and (3.7) that
. 5 0, fora(B,n) <eo <0
anaop
lim ( 2020 . . 9
im < v >HA B, 1) { (%) , foreo < a(B, p) }
i.e. (3.8). O

Hence by theorem 3.2, the domelNDg0 (3.9) can be described as
Dy =10.10 € 0: po6, w =lim {22}~ ol (3.13)
A \% Hy

Note that in contrast t®,,, see (1.9), (1.10), the domafng0 has a temperature-dependent
boundary and extends to positiue see figure 4. This macroscopic occupation of the mode
k = 0 (3.8) is anon-conventionaBose condensation which occurs in model (1.18) due to the
‘attraction’ termeogagao, i.e. whensg < O (see appendix A). It isimilar to thefirst stage of
condensation manifested by the mod&}* (1.6) with g;(V) = g/2), although in the latter
case itis only possible fgr < 0, see [13]. In particular, we once again have a saturation of

the condensate density in the mdde- O:
&
Sup po(6. 1) = po(8. p > uB(8)) = —— (3.14)
neRl 80

see (1.15) and figure 3. Note that for gay
gmﬂ(ﬂ, n) = —oo.

Thus, in contrast to model (1.6) (wit (V) = g/2), the non-conventional condensation
in model (1.18) depends on the temperature. The(ig) (the solution of the equation
@671, n) = €0, (3.10)) such that

_a(B, ) —eo

po(0, p) = ———— >0 (3.15)
80

for & < Bo(w) and

po(®, 1) =0 (3.16)

for & > 6o(1). This is another way to describe the phase diagram of model (167&,@)) is
simply the inverse function giy(9), see figure 4.

Similar to (1.6), in model (1.18) faf > 2 we encounter, for large total particle densities,
another kindof condensation: aonventional non-extensiBose—Einstein condensation in
the vicinity of k = 0 (see appendix A). In order to control this condensation we introduce an
auxiliary Hamiltonian

Hyy=Hyi—y Y. aa (3.17)
{keA*:||k|| =8}

for a fixeds > 0, and we set

1
pA(ﬁ? M, 7/) = ,B_V In TrfA e_ﬂHA-V('U’)‘ (318)

Remark 3.3. Let y < &5 = g =s. Then the system with HamiltoniaH, , has the same
properties as the modél, modulo the free-particle spectrum transformation:

&k = Eky =&k — ¥ - X[s,+00) (IKI]) (3.19)
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0,0.1)

—eolgjﬁ

.

o(®) 0 (E6) K

Figure 3. Non-conventional condensate dengity9, 1) as a function of the chemical potentjal
and the temperatuefor the modelH, .

Figure 4. DomainsD,, and590 corresponding to the existence of a non-conventional condensation
for the modelsH B2 and H, respectively.
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wherey 4 (x) is the characteristic function of domain In particular, the results of theorems 2.1
and 2.4 remain unchanged. K6t 1) € Q andy < g5 we have

pB, ) =lim pa(B, u, y) = inf { p¥%(B, « J/)+La)2 (3.20)
) ’ A ’ ) ago s Uy 4)\1
wherepB4(8, 1, y) is the pressure (1.8) but with the free-particle spectrum (3.19):

80Py }

PPBo 1 y) = pP(B 1, y) — inf [(80—u)p0+ >

/

1 _ ) — . 80P
= — In[(1 — e ey~ ddk — inf [ —~ + 0]
p(2m) /kew l ™1 mlo | (P07 P05
(3.21)
Theorem 3.4.For any (8, 1) € O we have
lim <“k“"> —0  keA*\{(0) (3.22)
\% Hy

i.e., there is no macroscopic occupation of maes 0, whereas fopr > uB%(6) = 21084(9)
the modelH, (1.18) manifests a generalized (non-extensive) Bose—Einstein condensation for
those modes:

R ¢
Jim lim = > (NQu, = p(B.w) — pE2(0) = (u wE:(©)) > 0. (3.23)
{ke A*:0<||k| <8}

Here p(B, 1) is defined by (3.4). I§; < 0, then this condensation coexists with the non-
conventional condensation in the mdde- O (see theorem 3.2).

Proof. Letg > 0 andAg > 0 be such thag — Ag > 0. Then by the Bogoliubov inequality

(see e.g. [27]), one gets

Ag 2 Ag 2

2—Vzk Z (NOYH, < Pa |:H oy Z Ni | — palHal (3.24)
eA*\{0} ke A*\{0}

Note that by theorems 2.1 and 2.4 the thermodynamic pressure limits for two models, (1.18)
with parameterg > 0 andg — Ag > 0, coincide with (2.13), i.e. one has

. A
lim {pA[HA _Z8 N,f} — pA[HA]} —o. (3.25)
A ke A*\{0}

0<

2V

Since for anyk € A* \ {0} we have the estimate

2 2
0< ((N"“’“) < WMl 1 > (NP,

2 2
4 14 14 keA*\{0}

its combination with (3.24) and (3.25) gives (3.22).
Lets > 0, then we have

1 x 1
=Y (Now, = ea(Bw) — <M> D DL AT (3.26)
Hy

4 (ke A*:0<||k|| <5} |4 4 {ke A*[[k|| =5}

Now we can follow the same line of reasoning as in the proofs of theorems 3.1 and 3.2: we
have the setp (8, u, v)}a Of convex functions ofy € (—oo, 5] with

1

v 2 Ndm, =dpaB )
{keA*:|lk]| =8}
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which by the Griffiths lemma and (3.20), (3.21) implies foe= 0 that

1
lim = > (Ndw, = dyp(Bpn.y =0). (3.27)

V ka5
Then by definitions (3.19), (3.20) and theorem 3.1 (see (3.2) and (3.4)), together with the
explicit formula (1.13) we get for < uB%(0) that
1 d?k

= — _ 3.28
@m)?" Jjgyzs & C 1) — 1 ©29

d,p(B, .,y =0)

and

1 d'k
T @0 Sz € -1
for u > uB%(0). Now, by virtue of (3.4), (3.14) and definition (1.14) we obtain (3.23)

from (3.26), (3.27) and (3.29) by first taking the thermodynamic limit and then the limit
s — 0% O

4. Conclusion

We have presented a new exactly soluble model (1.18) which is inspired by the MSV model [12]
and our previously presented model [13]. Due to an ‘attractive’-type interaction in the mode
k = 0 it belongs to the family of models which manifest two kinds of condensation: the
non-conventionabne in the modec = 0 and conventional(generalized) Bose—Einstein
condensation in modds=~ 0. These condensations coexist for large total particle densities
o > pB%(6), oru > uB%(9) = 2xpB%(9). This model demonstrates the richness of the notion
of Bose condensation. It also gives a better understanding of the difference betereen
conventionaland conventionalcondensations. First, in spite of superstability of the model,
which implies

Supp(B, ) = +oo
neR?!
the conventional condensation is due to a mechanism of saturation. Since, after saturation of
the non-conventional condensation, the kinetic-energy density attains its maximal value at the
critical densitypB4(9), the further growth of the total energy density for- pB%(9) is caused
by a macroscopic amount of particles with almost zero momenta.
The second important feature of model (1.18) (similar to [12, 13] and in contrast to [14])
is that the repulsion between bosons witB4 0 is strong enough to produce a generalized
type Il (i.e. non-extensive) Bose—Einstein condensation. Note that in the Bogoliubov weakly
imperfect Bose gas [14, 15], the Bose—Einstein condensation is of type I.
The models of [12] and [13], together with the present one give explicit examples when the
non-extensive Bose—Einstein condensation is produced by the interbetiwaen particles
and not by the geometry or by external field as in [7,8] or in [6,9, 10]. Note that the influence
of different kinds of diagonal perturbations on Bose condensation has been a subject of careful
analysis, see e.g. [28] and references therein. As, there, the authors characterize condensate
by occupation measures (instead of occupation numbers), there is no way to establish the type
of generalized condensation corresponding to a singular part of this measure. It is also an
open problem whether the weight of this singular atomic measure is due to conventional or
non-conventional condensation or to a combination of both.
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Note added in prooflf one putsgp = ¢ = 0, then our model (1.18) coincides with the model considered in chapter 4
of the paper [30]. According to our classification this model gives an example when condensation oongs in
stage: foru > ug®) = 20p* (B, o) + €0 one has only amon-conventionaBose condensatiopf (8, 1) which is
not saturated becaugg = O, cf (3.14). A similar behaviour is obtained whegn = A = g = 0, see [24], or when
g0 = go = 0 andg = —X < 0 (the Huang-Yang-Luttinger), see [23, 28].

We thank Joe Pelfor attracting our attention to the paper [30] and for helpful comments.
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Appendix A. Classification of Bose condensations

A.1. The van den Berg—Lewis—Rld classification (condensations of type I, Il and III)

For the reader’s convenience we recall the nomenclature appertaining to (generalized) Bose—
Einstein condensations according to 3, 7, 8]:

o the condensation is called the type | when a finite number of single-particle levels are
macroscopically occupied,;

o itis of type Il when an infinite number of the levels are macroscopically occupied;

e it is called the type IllI, or thenon-extensiveondensation, when none of the levels are
macroscopically occupied whereas one has

1
lim lim — Ny = p — p.(0).
Jim lin {kemzuw}< ) =p — pe(6)

An example of these different condensations is given in [7]. This paper demonstrates
that three types of Bose—Einstein condensation can be realized in the case of the PBG in an
anisotropicrectangular boxA c R® of volumeV = |A| = L, - L, - L, and with Dirichlet
boundary conditions. LeL, = V*, L, = V*, L, = V% for ay + ay, + «, = 1 and
oy <ay <o Ifa; < % then for sufficiently large density, we have the Bose—Einstein
condensation of type I in the fundamental mdde-= (¥, &, #). Fora, = ; one gets
a condensation of type Il characterized by a macroscopic occupation of infinite package of
modesk = (5%, 2%, 2) 5 € N, whereas for, > 3 we obtain a condensation of type III.
In[6,9] it was shown thatthe type 1l condensation can be caused in the PBG by a weak external
potential or (see [8,10]) by a specific choice of the boundary conditions and geometry. Another
example ofnon-extensiveondensation is given in [12, 13] for bosons inisotropicbox A,
with repulsive interactionsvhich spread out theonventionaBose—Einstein condensation of
type | into Bose—Einstein condensation of type Ill.

A.2. Non-conventional versus conventional Bose condensation

Here we classify Bose condensations by their mechanisms of formation. In most papers
(see [6-10, 12]), the condensation is dusaturationof the total particle density, originally
discovered by Einstein [1] in the Bose gas without interaction (PBG). We cafldhigentional
Bose-Einstein condensation [2].

The existence of condensation induced ibteraction has been pointed out in some
recent papers [13-15, 29]; it may also be the case for Huang—Yang-Luttinger or full diagonal
models [28], since they contain attractive interactions. In particular, this is the case of the
Bogoliubov weakly imperfect Bose gas [14]. We call thisr-conventionaBose condensation.
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(i) As has been shown in this paper (see also [13]), the non-conventional condensation does
not exclude the appearance of the Bose—Einstein condensation when the total density of
particles grows and exceeds some saturation J¥(o).

(i) To appreciate the notion of non-conventional condensation let us remark that in
models (1.6) and (1.18) fat = 1, 2, there only exists one kind of condensation, namely
the non-conventional.

Since known Bose systems manifesting condensation are far from perfect, the concept of
condensation induced by interaction is rather natural.

Remark A.1. A non-conventional Bose condensation can always be characterized by its type.
Therefore, formally one obtains six kinds of condensation: the non-conventional versus the
conventional of types I, 11 or lII.

Appendix B. The Griffiths lemma [25, 26]

Lemma B.1. Let{ f,(x)},>1 be a sequence of convex functions on a compactR. If there
exists a pointwise limit

lim_f,(x) = f(x) xel (B.1)

then
lim infd, f,(x —0) > 8, f(x —0)

=
lim supod, f,(x +0) < 9, f(x +0).

n—o00o

(B.2)

Proof. By convexity one has
1
0y fu(x +0) < j[fn(x +1) = fu(x)]

1
8xfn(x - O) > T[fn(x) - fn(x - l)]
for ! > 0. Then taking the limiz — oo in (B.3), by (B.1) we obtain

(B.3)

lim_supd, f,(x +0) < Tl[f(x +1) — f(x)]

1
lim inf o, f,(x — 0) > T[f(x) - f(x=D]
Now taking the limit/ — +0, in (B.4), one gets (B.2). O

(B.4)

Remark B.2. In particular, if xo € I is such thato, f,(xo0 — 0) = 9, f,(xo + 0) and
0y f(xo — 0) = 9, f(xo + 0), then

nlinoo a}tfn (xO) = 8x f(XO).
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