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Abstract. We present an exactly soluble boson model which manifests two kinds of condensation.
They occur in two stages: for intermediate densities one has anon-conventionalBose condensation
in the lowest modek = 0, which is due to a diagonal perturbation of the imperfect Bose
gas Hamiltonian, whereas for large densitiesρ, this condensation coexists withconventional
(generalized, non-extensive)Bose–Einstein condensation in non-zero modes condensation,
corresponding to the standard mechanism of saturation.

1. Introduction

Since its first description by Einstein [1] in 1925, it has been known thatconventionalBose–
Einstein condensation with macroscopic occupation of a single level is a very subtle matter.
For example, its magnitude strongly depends on the shape of container and on the way one
takes the thermodynamic limit, see e.g. [2,3] and appendix A. It was Casimir [4] who showed
that in a long prism it is possible for condensation in the perfect Bose gas (PBG) to occur in a
‘narrow band’ rather than in a single level. This was an example ofgeneralizedBose–Einstein
condensation, a concept introduced earlier by Girardeau [5]. The first rigorous treatment
of this observation for the PBG was due to van den Berg, Lewis and Pulè [3, 6–10]. They
proposed a classification of generalized condensation types; according to this classification
the condensation in a single level is of type I, see appendix A.

The salient feature of conventional Bose–Einstein condensation (generalized or not) is
that it appears in non-interacting systems of bosons (this does not rule out external potentials)
as soon as the total particle density becomes larger than some critical value. Therefore, behind
this kind of condensation there exists asaturation mechanismrelated to the Bose statistics
of particles. It was demonstrated in [11] that exactly the same mechanism is responsible
for Bose–Einstein condensation in a system of bosons with repulsive interaction, commonly
called the imperfect Bose gas (IBG). In a recent paper [12] it was shown that, instead of the
geometry of the container, a judicious choice of repulsive interaction may split initial single-
level condensation (type I) into non-extensive (type III) condensation, when no levels are
macroscopically occupied.

Therefore, the concept of (generalized) conventional Bose–Einstein condensation caused
by the mechanism of saturation fits well for bosons with repulsive interaction.
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Since bosons are very sensitive to attraction, there is another kind of condensation (non-
conventionalBose condensation) induced by this interaction [13–15]. Again, this kind of
condensation appears when the total particle density (or chemical potential) becomes larger
than some critical value, but this is an attractive interaction (and not simply Bose statistics)
which defines the magnitude of the condensate and its behaviour. To escape the collapse,
an attractive interaction in a boson system should be stabilized by a repulsion. Therefore,
conventional and non-conventional condensation may coexist.

The aim of this paper is to study a model which has both kinds of condensation. The non-
conventional one is due to an attraction term in the Hamiltonian of the model. This condensation
starts at the single lowest level for moderate densities (negative chemical potentials) and
saturates at some critical density. It is above this threshold that theconventionalBose–Einstein
condensation appears to absorb the increasing total particle density (the saturation mechanism).

At these densities both kinds of condensation coexist. Moreover, the repulsive interaction
in our model is such that Bose–Einstein condensation splits into the non-extensive one, i.e.,
into the generalized type III condensation. Since it is known that Bose systems manifesting
condensation are far from perfect, we hope that our model will give more insight into possible
scenarios for condensation in real systems. For example, in a condensate of sodium atoms,
interaction seems to predominate compared to kinetic energy [16]. Therefore, condensation
in trapped alkali dilute gases [16–18] should be a combination ofnon-conventionaland
conventionalBose condensation.

To fix the notation we first recall the IBG model introduced by Huang [19]. It is a system
of identical bosons of massm enclosed in a cube3 ⊂ Rd , of volumeV = |3|, centred at the
origin defined by the Hamiltonian

H IBG
3 =

∑
k∈3∗

εka
∗
k ak +

λ

V
N2
3 εk ≡ }2k2/2m λ > 0 (1.1)

whereN3 =
∑

k∈3∗ a
∗
k ak ≡

∑
k∈3∗ Nk is the particle-number operator andεk corresponds to

the one-particle kinetic energy. Here{a#
k }k∈3∗ are the boson creation/annihilation operators

in the boson Fock spaceF3 overL2(3), corresponding to the second quantization in the box
3 = ×dα=1L with periodic boundary conditions, i.e. to the dual

3∗ =
{
k ∈ Rd : kα = 2πnα

L
, nα = 0,±1,±2, . . . ;α = 1, 2, . . . , d

}
.

Then, ford > 2, at a given temperatureθ = β−1 and a total particle densityρ > ρPc (θ)

(hereρPc (θ) ≡ ρP (θ−1, µ = 0), whereρP (β, µ) is the particle density of the PBG in the
grand-canonical ensemble) the IBG manifests aconventionalBose–Einstein condensation
of type I [11, 20, 21], i.e. a macroscopic occupation of only the single-particle ground-state
level k = 0. See [7, 8] or appendix A for a classification ofconventionalBose–Einstein
condensations.

However, in a recent paper [12] it was shown that the IBG (1.1) perturbed by the repulsive
diagonal interaction

Ũ3 = λ

2V

∑
k∈3∗

N2
k λ > 0 (1.2)

demonstrates the Bose–Einstein condensation which occurs again for densitiesρ > ρPc (θ) (or
µ > 2λρPc (θ) ≡ µIc(θ)), but now it spreads into the Bose–Einstein condensation of type III.
This is a non-extensivecondensation, whenno single-particle levels are macroscopically
occupied (see appendix A). This model forλ > 0 was introduced in [22]. In what follows we
call it the Michoel–Schr̈oder–Verbeure (MSV) model:

HMSV
3 ≡ H IBG

3 + Ũ3. (1.3)



A model with coexistence of two kinds of Bose condensation 451

Then the conventional Bose–Einstein condensation of type III means that

lim
3

〈Nk〉HMSV
3

V
= 0 k ∈ 3∗

for anyρ, whereas the double limit

lim
δ→0+

lim
3

1

V

∑
{k∈3∗,06‖k‖6δ}

〈Nk〉HMSV
3
= ρ − ρP

c (θ) > 0

for µ > µIc(θ). Here we denote by〈−〉HMSV
3
(β, µ), β > 0,µ ∈ R1, the grand-canonical Gibbs

state for the HamiltonianHMSV
3 . Note that the modelH IBG

3 − Ũ3 is rigorously studied in [23].
There it was shown that Bose–Einstein condensation is of type I only in the zero-modek = 0.

The fact that a gentle repulsive interaction may produce a generalizednon-extensiveBose–
Einstein condensation without any change of corresponding pressure has been also shown in
our recent paper [13]. This was done in context of a system:

H 0
3 =

∑
k∈3∗\{0}

εka
∗
k ak + ε0a

∗
0a0 +

g0

2V
a∗0a
∗
0a0a0 (1.4)

with ε0(6= εk=0) ∈ R1 andg0 > 0, perturbed by the interaction

U3 = 1

V

∑
k∈3∗\{0}

gk(V )a
∗
k a
∗
k akak 0< g− 6 gk(V ) 6 γkV αk (1.5)

with αk 6 α+ < 1 and 0< γk 6 γ+. This perturbationU3 (similar to the interactioñU3 when
gk = λ) leads to the Hamiltonian [13]

HBZ
3 ≡ H 0

3 +U3. (1.6)

In contrast to the MSV model, the grand-canonical pressure for our model (1.6)

pBZ
3 (β, µ) ≡ p3[HBZ

3 ] ≡ 1

βV
ln TrF3 e−β(H

BZ
3 −µN3) (1.7)

in the thermodynamic limit is only defined in the domainQ = {µ 6 0} × {θ > 0}. Hereµ
is the chemical potential of the grand-canonical ensemble. In the thermodynamic limit this
pressure is equal to

pBZ(β, µ) ≡ lim
3
pBZ
3 (β, µ) = lim

3
p3[H 0

3] = pP(β, µ)− inf
ρ0>0

[
(ε0 − µ)ρ0 +

g0ρ
2
0

2

]
(1.8)

see [13]. HerepP(β, µ) is the pressure of the PBG in the thermodynamic limit. Notice that
the pressure (1.8) is independent of the parameters{gk(V )}k∈3∗\{0}, i.e. of interaction (1.5).

Remark 1.1. Let domainDε0 be defined by

Dε0 ≡ {(θ, µ) ∈ Q : pP(β, µ) < pBZ(β, µ)}. (1.9)

Then the thermodynamic limit (1.8) states that to ensureDε0 6= {∅}, the parameterε0 must be
negative, i.e.

Dε0 = {(θ, µ) ∈ Q : ε0 < µ 6 0}. (1.10)

Below we only consider the caseε0 < 0 andd > 2.

We denote byρBZ
3 (β, µ), the total particle density in the grand-canonical ensemble for the

modelHBZ
3 :

ρBZ
3 (β, µ) ≡

〈
N3

V

〉
HBZ
3

(β, µ). (1.11)
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ThenρBZ(β, µ) ≡ lim3 ρ
BZ
3 (β, µ) is the corresponding thermodynamic limit which, according

to [13], is equal to

ρBZ(β, µ) = ρP(β, µ) (1.12)

for (θ, µ 6 ε0), and to

ρBZ(β, µ) = ρP(β, µ) +
µ− ε0

g0
(1.13)

for (θ, ε0 < µ < 0). Note that ford > 2 there is a finite critical density

ρBZ
c (θ) ≡ sup

µ60
ρBZ(θ−1, µ) = ρBZ(θ−1, µ = 0) = ρP

c (θ)−
ε0

g0
< +∞ (1.14)

in this model.

Proposition 1.2. [13] Letρ > ρBZ
c (θ) (d > 2)and0< g− 6gk(V ) 6 γkV αk for k ∈ 3∗\{0},

with αk 6 α+ < 1 and0< γk 6 γ+. Then for anyε0 < 0 we have:

(i) a condensation in the modek = 0 (even ifd < 3), i.e.

ρBZ
0 (θ, µ) ≡ lim

3

〈
a∗0a0

V

〉
HBZ
3

=
{

0, for (θ, µ) ∈ Q \Dε0

(
µ−ε0

g0
), for (θ, µ) ∈ Dε0

}
(1.15)

(ii) for any ε0 ∈ R1

lim
3

〈
a∗k ak
V

〉
HBZ
3

= 0 k ∈ 3∗ \ {0} (1.16)

i.e. there is no macroscopic occupation of modesk 6= 0 but we have a generalized (non-
extensive) Bose–Einstein condensation:

lim
δ→0+

lim
3

1

V

∑
{k∈3∗:0<‖k‖<δ}

〈Nk〉HBZ
3
= ρ − ρBZ

c (θ) > 0 (1.17)

which forε0 < 0 coexists with the condensation in the modek = 0 if (θ, µ) ∈ Dε0.

Therefore, proposition 1.2 implies thecoexistenceof two kindsof Bose condensation in
model (1.6) for densitiesρ > ρBZ

c (θ):

• a Bose condensation in the single modek = 0 due to the term(ε0a
∗
0a0) which for

ε0 < 0 mimics anattractionby an external potential [24] giving rise to anon-conventional
condensation of type I (see appendix A for the classification);
• aconventionalBose–Einstein condensation due tosaturationof the total particle density,

where (similar to the MSV model) the type III condensation is due to the elastic repulsive
interactionU3 (1.5) of bosons in modesk 6= 0. Therefore, interaction (1.5) is decisive
for the formation of the non-extensive Bose–Einstein condensation in model (1.6), while
it has no influence on the pressure (1.8).

The aim of this paper is to study a modification of model (1.6) which is, similar to (1.3),
stabilized by the IBG interaction (1.1):

H3 =
∑

k∈3∗\{0}
εka
∗
k ak + ε0a

∗
0a0 +

g0

2V
N2

0 +
λ

V
N2
3 +

g

2V

∑
k∈3∗\{0}

N2
k . (1.18)

Hereλ > 0, g0 > 0, g > 0, butε0 < 0. Note that the modelH3 for ε0 = 0 andλ = g = g0

coincides with the MSV model (1.3).
In section 2 we show that for this generalization of models (1.3) and (1.6), the free-energy

density or the pressure can be calculated exactly in the thermodynamic limit. Different kinds of
Bose condensations, which occur in this model (1.18 ), are described in section 3. We reserve
section 4 for concluding remarks and discussions. A classification of Bose condensations and
some technical statements are presented in the appendices.
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2. Thermodynamic study

First we consider our model (1.18) in thecanonical ensemble(β, ρ). This essentially simplifies
the thermodynamic study of the model. Letf3(β, ρ = n

V
) be the corresponding free-energy

density, i.e.

f3(β, ρ) ≡ − 1

βV
ln TrHn3,S (e

−βH3) (2.1)

whereHn3,S ≡ S(⊗ni=1L
2(3)) is the symmetrizedn-particle Hilbert space.

Theorem 2.1.Letλ > 0, g > 0, g0 > 0 andε0 < 0, then we get

f (β, ρ) ≡ lim
3
f3(β, ρ) = λρ2 + inf

ρ0∈[0,ρ]

{
ε0ρ0 +

g0

2
ρ2

0 + f P(β, ρ − ρ0)
}

(2.2)

i.e. the limit is independent ofg, providedg > 0. Heref P(β, ρ) is the free energy of the PBG
in the thermodynamic limit, i.e.

f P(β, ρ) ≡ lim
3
f P
3(β, ρ) (2.3)

with

f P
3(β, ρ) ≡ −

1

βV
ln

∑
{nk=0,1,2,...}k∈3∗

e−β(
∑

k∈3∗ εknk)δ∑
k∈3∗ nk=[ρV ] (2.4)

and[x] denotes the integer part ofx > 0.

Proof. By (1.18) and (2.1) we get

f3(β, ρ) = − 1

βV
ln

{ [ρV ]∑
n0=0

e−βV h(ρ,
n0
V
)

}
+ λρ2 (2.5)

where

h3(ρ, ρ0) ≡ ε0ρ0 +
g0

2
ρ2

0 −
1

βV
ln

∑
{nk=0,1,2,...}k∈3∗\{0}

e−β(
∑

k∈3∗\{0}[εknk+
g

2V n
2
k ])δ∑

k 6=0 nk=[ρV ]−[ρ0V ] .

(2.6)

By (2.5) one obtains the estimate

λρ2 + inf
ρ0∈[0,ρ]

h3(ρ, ρ0)− 1

βV
ln([ρV ] + 1) 6 f3(β, ρ) 6 λρ2 + inf

ρ0∈[0,ρ]
h3(ρ, ρ0)

which in the thermodynamic limit gives

f (β, ρ) ≡ lim
3
f3(β, ρ) = λρ2 + lim

3
inf

ρ0∈[0,ρ]
h3(ρ, ρ0). (2.7)

Note that (2.6) can be rewritten as

h3(ρ, ρ0) = ε0ρ0 +
g0

2
ρ2

0 −
1

βV
ln〈e− βg

2V

∑
k∈3∗\{0} n

2
k 〉H̃P

3
(β, ρ − ρ0) (2.8)

where〈−〉H̃P
3
(β, ρ − ρ0) is the canonical Gibbs state for the PBG withexcludedmodek = 0

for densityρ − ρ0, with the corresponding free-energy densitỹf P
3(β, ρ) defined by (2.4) for

k ∈ 3∗ \ {0}. Since

lim
3
f̃ P
3(β, ρ) = lim

3
f P
3(β, ρ)
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the Jensen inequality

〈e− βg

2V

∑
k∈3∗\{0} n

2
k 〉H̃P

3
> e
− βg

2V 〈∑k∈3∗\{0} n
2
k〉H̃P

3

and (2.8) imply the estimate

lim
3
h3(ρ, ρ0) 6 ε0ρ0 +

g0

2
ρ2

0 + f P(β, ρ − ρ0). (2.9)

Moreover, since

e−
βg

2V n
2
k 6 1

by (2.6) we have

h3(ρ, ρ0) > ε0ρ0 +
g0

2
ρ2

0 + f P
3(β, ρ − ρ0)

which together with (2.9) gives (2.2). �

Remark 2.2. Let us denote byf BZ
3 (β, ρ) the free-energy density corresponding toHBZ

3 (1.6)
with gk(V ) = g/2, i.e.

f BZ
3 (β, ρ) ≡ − 1

βV
ln TrHn3,S (e

−βHBZ
3 ).

Then (1.6), (1.18) and (2.1) imply that

f3(β, ρ) = λρ2 + f BZ
3 (β, ρ)

from which, by theorem 2.1, we deduce

f BZ(β, ρ) ≡ lim
3
f BZ
3 (β, ρ) = inf

ρ0∈[0,ρ]

{
ε0ρ0 +

g0

2
ρ2

0 + f P(β, ρ − ρ0)
}

(2.10)

and

f (β, ρ) = λρ2 + f BZ(β, ρ). (2.11)

By explicit calculation, one checks the convexity off BZ(β, ρ) as a function ofρ. Therefore,
the same is true forf (β, ρ), see (2.2) and (2.11).

Remark 2.3. Since the pressurepBZ(β, µ) is a Legendre transform of the corresponding free-
energy densityf BZ(β, ρ), we get from (2.10) that

pBZ(β, µ) = sup
ρ>0
{µρ − f BZ(β, ρ)}

= sup
ρ0>0

{
sup
ρ>ρ0

{
µρ0 − ε0ρ0 − g0

2
ρ2

0 +µ(ρ − ρ0)− f P(β, ρ − ρ0)
}}

= sup
ρ0>0

{
pP(β, µ)− (ε0 − µ)ρ0 − g0

2
ρ2

0

}
which coincides with (1.8) found in [13].

Now we consider our model (1.18) in thegrand-canonical ensemble(β, µ). Let

p3(β, µ) ≡ 1

βV
ln TrF3 e−β(H3−µN3)

be the grand-canonical pressure corresponding to (1.18).

Theorem 2.4.Letλ > 0, g0 > 0, g > 0, andε0 < 0, then:
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(i) the domain of stability ofH3, i.e.

Q̃ ≡ {(θ > 0, µ ∈ R1) : lim
3
p3(β, µ) < +∞} (2.12)

is equal toQ̃ = {θ > 0} × {µ ∈ R1};
(ii) in the thermodynamic limit one gets

p(β,µ) ≡ lim
3
p3(β, µ) = inf

α60

{
pBZ(β, α) +

(µ− α)2
4λ

}
(2.13)

for (θ, µ) ∈ Q̃, wherepBZ(β, µ) is the pressure defined by (1.8). Therefore, the
pressure (2.13) is independent of the parameterg provided it is positive.

Proof. (i) Note that the HamiltonianH3 (1.18) is superstable, i.e. there areB = −ε0 and
C = λ such that

H3 > −N3B +
C

V
N2
3 (2.14)

for any box3. Therefore, by (2.14) we obtain that the infinite volume limit (2.13) exists for
anyµ ∈ R1.

(ii) Since the pressurep(β,µ) is in fact a Legendre transform of the corresponding free-
energy densityf (β, ρ) (2.2) or (2.11), by theorem 2.1 we get

p(β,µ) = sup
ρ>0
{µρ − f (β, ρ)} = sup

ρ>0
{µρ − λρ2 − f BZ(β, ρ)} (2.15)

with f BZ(β, ρ) defined by (2.10). Straightforward calculations give that

inf
α60

{
αρ +

(µ− α)2
4λ

− f BZ(β, ρ)

}
= µρ − λρ2 − f BZ(β, ρ)

and thus (2.15) takes the form

p(β,µ) = sup
ρ>0

{
inf
α60

{
αρ +

(µ− α)2
4λ

− f BZ(β, ρ)

}}
. (2.16)

Note that the supρ>0 and infα60 do not generally commute. However, convexity of the free-
energy densityf BZ(β, ρ) (see remark 2.2) implies that

F(ρ, α) ≡ αρ +
(µ− α)2

4λ
− f BZ(β, ρ) (2.17)

is a strictly concave function ofρ and a strictly convex function ofα, see figure 1. This ensures
the uniqueness of the stationary point(ρ̃, α̃) corresponding to

∂αF (ρ̃, α̃) = 0

∂ρF (ρ̃, α̃) = 0.

Therefore,

F(ρ̃, α̃) = sup
ρ>0

{
inf
α60
{F(ρ, α)}

}
= inf

α60

{
sup
ρ>0
{F(ρ, α)}

}
. (2.18)

Since

sup
ρ>0

F(ρ, α) =
{
(µ− α)2

4λ
+ pBZ(β, α)

}
(2.16)–(2.18) imply (2.13). �
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0

.
α

ρ
ρ

α

 (ρ,α)F

Figure 1. Illustration of the functionF(ρ, α).

3. Bose condensations

Let ρ3(β, µ) denote the grand-canonical total particle density corresponding to model (1.18),
i.e.

ρ3(β, µ) ≡
〈
N3

V

〉
H3

= ∂µp3(β, µ) (3.1)

where〈−〉H3(β, µ) represents the grand-canonical Gibbs state for the HamiltonianH3 (1.18).

Theorem 3.1.For (θ, µ) ∈ Q̃ (2.12) we have

ρ(β, µ) ≡ lim
3
ρ3(β, µ) = ρBZ(β, α̂(β, µ)). (3.2)

Hereα̂(β, µ) 6 0 is a unique solution of the equation

ρBZ(β, α) +
(α − µ)

2λ
= 0 (3.3)

whenµ 6 µBZ
c (θ) ≡ 2λρBZ

c (θ), whereas forµ > µBZ
c (θ) one gets (see figure 2)

ρ(β, µ) ≡ lim
3
ρ3(β, µ) = µ

2λ
. (3.4)

HereρBZ
c (θ) is defined above by (1.14).

Proof. Let α̃(β, µ) 6 0 be defined by (2.13), i.e.

p(β,µ) = inf
α60

{
pBZ(β, α) +

(µ− α)2
4λ

}
= pBZ(β, α̃(β, µ)) +

(µ− α̃(β, µ))2
4λ

. (3.5)

Since

∂α

[
pBZ(β, α) +

(µ− α)2
4λ

]
= ρBZ(β, α) +

(α − µ)
2λ

(3.6)

then forµ 6 µBZ
c (θ) = 2λρBZ

c (θ) (see (1.14)) there exists a unique solutionα̂(β, µ) 6 0
of (3.3) which coincides with̃α(β, µ) in (3.5). Since{p3(β, µ)}3 are convex functions of
µ ∈ R1, then combining (3.1) and (3.5) with the Griffiths lemma (see [25,26] or appendix B)
we obtain the thermodynamic limit for the total particle density

ρ(β, µ) = ∂µp(β, µ) = (µ− α̃(β, µ))
2λ

.
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0
ε

α(β,µ) BZ

µ
0µ  (θ) µ  (θ)C

0

Figure 2. Illustration of the functioñα(β, µ) defined by equation (3.5).

This together with (3.3) gives (3.2).
Now letµ > µBZ

c (θ). Then by definitions ofµBZ
c (θ) andρBZ

c (θ) (see (1.14)) one gets

∂α

[
pBZ(β, α) +

(µ− α)2
4λ

]
= ρBZ(β, α) +

(α − µ)
2λ

6 0.

This implies that

p(β,µ) = inf
α60

{
pBZ(β, α) +

(µ− α)2
4λ

}
= pBZ(β, 0) +

µ2

4λ
(3.7)

i.e. α̃(β, µ) = 0. Therefore, by the Griffiths lemma and (3.1), (3.7) we get (3.4). �

Theorem 3.2.Let ε0 < 0. Then we have

ρ0(θ, µ) ≡ lim
3

〈
a∗0a0

V

〉
H3

(β, µ) =
{ 0, for (θ, µ) ∈ Q̃ \ D̃ε0(

α̃(β,µ)−ε0

g0

)
, for (θ, µ) ∈ D̃ε0

}
(3.8)

with α̃(β, µ) defined by equation (3.5), see figure 2. Here domainD̃ε0 is defined by

D̃ε0 = {(θ, µ) ∈ Q̃ : ε0 < α̃(β, µ)} = {(θ, µ) ∈ Q̃ : µ̃0(θ) < µ} (3.9)

see figures 2 and 4, where we denote byµ̃0(θ) a unique solution of the equation

α̃(β, µ) = ε0. (3.10)

Proof. Since{p3(β, µ)}3 are convex functions ofε0 ∈ R1, then by〈
a∗0a0

V

〉
H3

(β, µ) = −∂ε0p3(β, µ) (3.11)

and by the Griffiths lemma (see [25,26] or appendix B) we obtain that

lim
3

〈
a∗0a0

V

〉
H3

(β, µ) = −∂ε0p(β,µ). (3.12)

For µ 6 µBZ
c (θ) = 2λρBZ

c (θ) there is a uniquẽα(β, µ) 6 0 defined by (3.5) which
verifies (3.3), whereas forµ > µBZ

c (θ) according to (3.7) we obtaiñα(β, µ) = 0. Note
that by (1.8) forµ 6 ε0 we have

pBZ(β, µ) = pP(β, µ).



458 J-B Bru and V A Zagrebnov

Therefore, by (3.9), (3.12) one gets from (3.5) and (3.7) that

lim
3

〈
a∗0a0

V

〉
H3

(β, µ) =
{

0, for α̃(β, µ) 6 ε0 < 0(
α̃(β,µ)−ε0

g0

)
, for ε0 6 α̃(β, µ)

}
i.e. (3.8). �

Hence by theorem 3.2, the domaiñDε0 (3.9) can be described as

D̃ε0 =
{
(θ, µ) ∈ Q̃ : ρ0(θ, µ) ≡ lim

3

〈
a∗0a0

V

〉
H3

> 0

}
. (3.13)

Note that in contrast toDε0, see (1.9), (1.10), the domaiñDε0 has a temperature-dependent
boundary and extends to positiveµ, see figure 4. This macroscopic occupation of the mode
k = 0 (3.8) is anon-conventionalBose condensation which occurs in model (1.18) due to the
‘attraction’ termε0a

∗
0a0, i.e. whenε0 < 0 (see appendix A). It issimilar to thefirst stage of

condensation manifested by the modelHBZ
3 (1.6) with gk(V ) = g/2), although in the latter

case it is only possible forµ 6 0, see [13]. In particular, we once again have a saturation of
the condensate density in the modek = 0:

sup
µ∈R1

ρ0(θ, µ) = ρ0(θ, µ > µBZ
c (θ)) = −

ε0

g0
(3.14)

see (1.15) and figure 3. Note that for anyµ

lim
β→0+

α̃(β, µ) = −∞.

Thus, in contrast to model (1.6) (withgk(V ) = g/2), the non-conventional condensation
in model (1.18) depends on the temperature. There isθ̃0(µ) (the solution of the equation
α̃(θ−1, µ) = ε0, (3.10)) such that

ρ0(θ, µ) = α̃(β, µ)− ε0

g0
> 0 (3.15)

for θ < θ̃0(µ) and

ρ0(θ, µ) = 0 (3.16)

for θ > θ̃0(µ). This is another way to describe the phase diagram of model (1.18):θ̃0(µ) is
simply the inverse function of̃µ0(θ), see figure 4.

Similar to (1.6), in model (1.18) ford > 2 we encounter, for large total particle densities,
another kindof condensation: aconventional non-extensiveBose–Einstein condensation in
the vicinity of k = 0 (see appendix A). In order to control this condensation we introduce an
auxiliary Hamiltonian

H3,γ ≡ H3 − γ
∑

{k∈3∗:‖k‖>δ}
a∗k ak (3.17)

for a fixedδ > 0, and we set

p3(β, µ, γ ) ≡ 1

βV
ln TrF3 e−βH3,γ (µ). (3.18)

Remark 3.3. Let γ < εδ ≡ ε‖k‖=δ. Then the system with HamiltonianH3,γ has the same
properties as the modelH3 modulo the free-particle spectrum transformation:

εk → εk,γ ≡ εk − γ · χ[δ,+∞)(‖k‖) (3.19)
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µ  (θ)BZ µ
C0

0
/g

0
−ε

µ  (θ)

0
ρ (θ,µ)

0

Figure 3. Non-conventional condensate densityρ0(θ, µ) as a function of the chemical potentialµ
and the temperatureθ for the modelH3.

0
ε

D

0

µ

0

0ε

0εD

µ (θ)

θ

Figure 4. DomainsDε0 andD̃ε0 corresponding to the existence of a non-conventional condensation
for the modelsHBZ

3 andH3 respectively.
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whereχA(x) is the characteristic function of domainA. In particular, the results of theorems 2.1
and 2.4 remain unchanged. For(θ, µ) ∈ Q̃ andγ < εδ we have

p(β,µ, γ ) ≡ lim
3
p3(β, µ, γ ) = inf

α60

{
pBZ(β, α, γ ) +

(µ− α)2
4λ

}
(3.20)

wherepBZ(β, µ, γ ) is the pressure (1.8) but with the free-particle spectrum (3.19):

pBZ(β, µ, γ ) = pP(β, µ, γ )− inf
ρ0>0

[
(ε0 − µ)ρ0 +

g0ρ
2
0

2

]
= 1

β(2π)d

∫
k∈Rd

ln[(1− e−β(εk,γ−µ))−1] ddk − inf
ρ0>0

[
(ε0 − µ)ρ0 +

g0ρ
2
0

2

]
.

(3.21)

Theorem 3.4.For any(θ, µ) ∈ Q̃ we have

lim
3

〈
a∗k ak
V

〉
H3

= 0 k ∈ 3∗ \ {0} (3.22)

i.e., there is no macroscopic occupation of modesk 6= 0, whereas forµ > µBZ
c (θ) = 2λρBZ

c (θ)

the modelH3 (1.18) manifests a generalized (non-extensive) Bose–Einstein condensation for
those modes:

lim
δ→0+

lim
3

1

V

∑
{k∈3∗:0<‖k‖<δ}

〈Nk〉H3 = ρ(β, µ)− ρBZ
c (θ) = 1

2λ
(µ− µBZ

c (θ)) > 0. (3.23)

Here ρ(β, µ) is defined by (3.4). Ifε0 < 0, then this condensation coexists with the non-
conventional condensation in the modek = 0 (see theorem 3.2).

Proof. Let g > 0 and1g > 0 be such thatg −1g > 0. Then by the Bogoliubov inequality
(see e.g. [27]), one gets

06 1g

2V 2

∑
k∈3∗\{0}

〈N2
k 〉H3 6 p3

[
H3 − 1g

2V

∑
k∈3∗\{0}

N2
k

]
− p3[H3]. (3.24)

Note that by theorems 2.1 and 2.4 the thermodynamic pressure limits for two models, (1.18)
with parametersg > 0 andg −1g > 0, coincide with (2.13), i.e. one has

lim
3

{
p3

[
H3 − 1g

2V

∑
k∈3∗\{0}

N2
k

]
− p3[H3]

}
= 0. (3.25)

Since for anyk ∈ 3∗ \ {0} we have the estimate

06
( 〈Nk〉H3

V

)2

6 〈N
2
k 〉H3
V 2

6 1

V 2

∑
k∈3∗\{0}

〈N2
k 〉H3

its combination with (3.24) and (3.25) gives (3.22).
Let δ > 0, then we have

1

V

∑
{k∈3∗:0<‖k‖<δ}

〈Nk〉H3 = ρ3(β, µ)−
〈
a∗0a0

V

〉
H3

− 1

V

∑
{k∈3∗:‖k‖>δ}

〈Nk〉H3. (3.26)

Now we can follow the same line of reasoning as in the proofs of theorems 3.1 and 3.2: we
have the set{p3(β, µ, γ )}3 of convex functions ofγ ∈ (−∞, εδ] with

1

V

∑
{k∈3∗:‖k‖>δ}

〈Nk〉H3,γ = ∂γ p3(β, µ, γ )



A model with coexistence of two kinds of Bose condensation 461

which by the Griffiths lemma and (3.20), (3.21) implies forγ = 0 that

lim
3

1

V

∑
{k∈3∗:‖k‖>δ}

〈Nk〉H3 = ∂γ p(β, µ, γ = 0). (3.27)

Then by definitions (3.19), (3.20) and theorem 3.1 (see (3.2) and (3.4)), together with the
explicit formula (1.13) we get forµ < µBZ

c (θ) that

∂γ p(β, µ, γ = 0) = 1

(2π)d

∫
‖k‖>δ

ddk

eβ(εk−α̃(β,µ)) − 1
(3.28)

and

∂γ p(β, µ, γ = 0) = 1

(2π)d

∫
‖k‖>δ

ddk

eβεk − 1
(3.29)

for µ > µBZ
c (θ). Now, by virtue of (3.4), (3.14) and definition (1.14) we obtain (3.23)

from (3.26), (3.27) and (3.29) by first taking the thermodynamic limit and then the limit
δ→ 0+. �

4. Conclusion

We have presented a new exactly soluble model (1.18) which is inspired by the MSV model [12]
and our previously presented model [13]. Due to an ‘attractive’-type interaction in the mode
k = 0 it belongs to the family of models which manifest two kinds of condensation: the
non-conventionalone in the modek = 0 and conventional(generalized) Bose–Einstein
condensation in modesk 6= 0. These condensations coexist for large total particle densities
ρ > ρBZ

c (θ), orµ > µBZ
c (θ) = 2λρBZ

c (θ). This model demonstrates the richness of the notion
of Bose condensation. It also gives a better understanding of the difference betweennon-
conventionalandconventionalcondensations. First, in spite of superstability of the model,
which implies

sup
µ∈R1

ρ(β, µ) = +∞

the conventional condensation is due to a mechanism of saturation. Since, after saturation of
the non-conventional condensation, the kinetic-energy density attains its maximal value at the
critical densityρBZ

c (θ), the further growth of the total energy density forρ > ρBZ
c (θ) is caused

by a macroscopic amount of particles with almost zero momenta.
The second important feature of model (1.18) (similar to [12,13] and in contrast to [14])

is that the repulsion between bosons withk 6= 0 is strong enough to produce a generalized
type III (i.e. non-extensive) Bose–Einstein condensation. Note that in the Bogoliubov weakly
imperfect Bose gas [14,15], the Bose–Einstein condensation is of type I.

The models of [12] and [13], together with the present one give explicit examples when the
non-extensive Bose–Einstein condensation is produced by the interactionbetween particles
and not by the geometry or by external field as in [7,8] or in [6,9,10]. Note that the influence
of different kinds of diagonal perturbations on Bose condensation has been a subject of careful
analysis, see e.g. [28] and references therein. As, there, the authors characterize condensate
by occupation measures (instead of occupation numbers), there is no way to establish the type
of generalized condensation corresponding to a singular part of this measure. It is also an
open problem whether the weight of this singular atomic measure is due to conventional or
non-conventional condensation or to a combination of both.
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Note added in proof. If one putsg0 = g = 0, then our model (1.18) coincides with the model considered in chapter 4
of the paper [30]. According to our classification this model gives an example when condensation occurs inone
stage: forµ > µ∗0(θ) = 2λpP (β, ε0) + ε0 one has only anon-conventionalBose condensationp∗0(β, µ) which is
not saturated becauseg0 = 0, cf (3.14). A similar behaviour is obtained wheng0 = λ = g = 0, see [24], or when
ε0 = g0 = 0 andg = −λ < 0 (the Huang–Yang–Luttinger), see [23, 28].

We thank Joe Pulè for attracting our attention to the paper [30] and for helpful comments.
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Appendix A. Classification of Bose condensations

A.1. The van den Berg–Lewis–Pulè’s classification (condensations of type I, II and III)

For the reader’s convenience we recall the nomenclature appertaining to (generalized) Bose–
Einstein condensations according to [3,7,8]:

• the condensation is called the type I when a finite number of single-particle levels are
macroscopically occupied;
• it is of type II when an infinite number of the levels are macroscopically occupied;
• it is called the type III, or thenon-extensivecondensation, when none of the levels are

macroscopically occupied whereas one has

lim
δ→0+

lim
3

1

V

∑
{k∈3∗,0<‖k‖6δ}

〈Nk〉 = ρ − ρc(θ).

An example of these different condensations is given in [7]. This paper demonstrates
that three types of Bose–Einstein condensation can be realized in the case of the PBG in an
anisotropicrectangular box3 ⊂ R3 of volumeV = |3| = Lx · Ly · Lz and with Dirichlet
boundary conditions. LetLx = V αx , Ly = V αy , Lz = V αz for αx + αy + αz = 1 and
αx 6 αy 6 αz. If αz < 1

2, then for sufficiently large densityρ, we have the Bose–Einstein
condensation of type I in the fundamental modek = ( 2π

Lx
, 2π
Ly
, 2π
Lz
). For αz = 1

2 one gets
a condensation of type II characterized by a macroscopic occupation of infinite package of
modesk = ( 2π

Lx
, 2π
Ly
, 2πn
Lz
), n ∈ N, whereas forαz > 1

2 we obtain a condensation of type III.
In [6,9] it was shown that the type III condensation can be caused in the PBG by a weak external
potential or (see [8,10]) by a specific choice of the boundary conditions and geometry. Another
example ofnon-extensivecondensation is given in [12, 13] for bosons in anisotropicbox3,
with repulsive interactionswhich spread out theconventionalBose–Einstein condensation of
type I into Bose–Einstein condensation of type III.

A.2. Non-conventional versus conventional Bose condensation

Here we classify Bose condensations by their mechanisms of formation. In most papers
(see [6–10, 12]), the condensation is due tosaturationof the total particle density, originally
discovered by Einstein [1] in the Bose gas without interaction (PBG). We call thisconventional
Bose–Einstein condensation [2].

The existence of condensation induced byinteraction has been pointed out in some
recent papers [13–15,29]; it may also be the case for Huang–Yang–Luttinger or full diagonal
models [28], since they contain attractive interactions. In particular, this is the case of the
Bogoliubov weakly imperfect Bose gas [14]. We call thisnon-conventionalBose condensation.
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(i) As has been shown in this paper (see also [13]), the non-conventional condensation does
not exclude the appearance of the Bose–Einstein condensation when the total density of
particles grows and exceeds some saturation limitρBZ

c (θ).
(ii) To appreciate the notion of non-conventional condensation let us remark that in

models (1.6) and (1.18) ford = 1, 2, there only exists one kind of condensation, namely
the non-conventional.

Since known Bose systems manifesting condensation are far from perfect, the concept of
condensation induced by interaction is rather natural.

Remark A.1. A non-conventional Bose condensation can always be characterized by its type.
Therefore, formally one obtains six kinds of condensation: the non-conventional versus the
conventional of types I, II or III.

Appendix B. The Griffiths lemma [25,26]

Lemma B.1. Let {fn(x)}n>1 be a sequence of convex functions on a compactI ⊂ R. If there
exists a pointwise limit

lim
n→∞ fn(x) = f (x) x ∈ I (B.1)

then

lim
n→∞ inf ∂xfn(x − 0) > ∂xf (x − 0)

lim
n→∞ sup∂xfn(x + 0) 6 ∂xf (x + 0).

(B.2)

Proof. By convexity one has

∂xfn(x + 0) 6 1

l
[fn(x + l)− fn(x)]

∂xfn(x − 0) > 1

l
[fn(x)− fn(x − l)]

(B.3)

for l > 0. Then taking the limitn→∞ in (B.3), by (B.1) we obtain

lim
n→∞ sup∂xfn(x + 0) 6 1

l
[f (x + l)− f (x)]

lim
n→∞ inf ∂xfn(x − 0) > 1

l
[f (x)− f (x − l)].

(B.4)

Now taking the limitl→ +0, in (B.4), one gets (B.2). �

Remark B.2. In particular, if x0 ∈ I is such that∂xfn(x0 − 0) = ∂xfn(x0 + 0) and
∂xf (x0 − 0) = ∂xf (x0 + 0), then

lim
n→∞ ∂xfn(x0) = ∂xf (x0).
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